Рецепторы. Полиморфия чувств: как работают рецепторы кожи

Рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизмененными нервными клетками (чувствительные элементы сетчатки), которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества (например, тельце Пачини).

Принцип работы рецепторов

Стимулами для разных рецепторов могут служить свет , механическая деформация , химические вещества, изменения температуры , а также изменения электрического и магнитного поля. В рецепторных клетках (будь то непростредственно нервные окончания или специализированные клетки) соответствующий сигнал изменяет конформацию чувствительных молекул-клеточных рецепторов, что приводит к изменению активности мембранных ионных рецепторов и изменению мембранного потенциала клетки. Если воспринимающей клеткой является непосредственно нервное окончание (так называемые первичные рецепторы ), то обычно происходит деполяризация мембраны с последующей генерацией нервного импульса. Специализированные рецепторные клетки вторичных рецепторов могут как де-, так и гиперполяризоваться. В последнем случае изменение мембранного потенциала ведет к уменьшению секреции тормозного медиатора, действующего на нервное окончание и, в конечном счете, все равно к генерации нервного импульса. Такой механизм реализован, в частности, в чувствительных элементах сетчатки.

В качестве клеточных рецепторных молекул могут выступать либо механо-, термо- и хемочувствительные ионные каналы, либо специализированные G-белки (как в клетках сетчатки). В первом случае открытие каналов непосредственно изменяет мембранный потенциал (механочувствительные каналы в тельцах Пачини), во втором случае запускается каскад внутриклеточных реакций трансдукции сигнала, что ведет в конечном счете к открытию каналов и изменению потенциала на мембране.

Виды рецепторов

Существуют несколько классификаций рецепторов:

  • По положению в организме
    • Экстерорецепторы (экстероцепторы) - расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы (интероцепторы) - расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) - рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.
  • По способности воспринимать разные стимулы
    • Мономодальные - реагирующие только на один тип раздражителей (например, фоторецепторы - на свет)
    • Полимодальные - реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).

У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции - осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции - зрение. Терморецепторы есть в коже и некоторых внутренних органах. Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы. Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, восппринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т.д.

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток .

В таблице приведены данные о некоторых типах рецепторов

Природа раздражителя Тип рецептора Место расположения и комментарии
электрическое поле ампула Лоренцини en:Ampullae of Lorenzini и другие типы Имеются у рыб, круглоротых, амфибий, а также у утконоса и ехидны
химическое вещество хеморецептор
влажность гигрорецептор Относятся к осморецепторам или механорецепторам. Располагаются на антеннах и ротовых органах многих насекомых
механическое воздействие механорецептор У человека имеются в коже (экстероцепторы) и внутренних органах (барорецепторы, проприоцепторы)
давление барорецептор Относятся к механорецепторам
положение тела проприоцептор Относятся к механорецепторам. У человека это нервно-мышечные веретена , сухожильные органы Гольджи и др.
осмотическое давление осморецептор В основном интерорецепторы; у человека имеются в гипоталамусе, а также, вероятно, в почках, стенках желудочно-кишечного тракта, возможно, в печени. Существуют данные о широком распространении осморецепторов во всех тканях организма
свет фоторецептор
температура терморецептор Реагируют на изменение температуры. У человека имеются в коже и в гипоталамусе
повреждение тканей ноцицептор В большинстве тканей с разной частотой. Болевые рецепторы - свободные нервные окончания немиелинизированных волокон типа C или слабо миелинизированных волокон типа Aδ.
магнитное поле магнитные рецепторы Точное расположение и строение неизвестны, наличие у многих групп животных доказано поведенческими экспериментами

Рецепторы человека

Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями , то есть представляют грубую чувствительность.
  • Тельца Мейснера - рецепторы давления, расположенные в дерме . Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями , то есть представляют тонкую чувствительность.
  • Тельца Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями .
  • Рецепторы волосяных луковиц - реагируют на отклонение волоса.
  • Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями .
  • Колба Краузе - рецептор, реагирующий на холод.

Рецепторы мышц и сухожилий

  • Мышечные веретена - рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой
    • с ядерной цепочкой
  • Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок

В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа - инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини.

Рецепторы сетчатки глаза

Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны). Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A . Эта молекула и представляет собой химически трансформируемую светом часть. Белковая часть выцветшей молекулы зрительного пигмента активирует молекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата , участвующих в открытии пор мембраны для ионов натрия , в результате чего поток ионов прекращается - мембрана гиперполяризуется.

Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки не способны реагировать на изменения освещённости, когда свет настолько ярок, что все натриевые каналы уже закрыты.

Человеческий организм наделен способностями восприятия как внешнего, так и внутреннего мира, о воздействии на которой можно получить различные сигналы. Такие сигналы в человеческом организме способны воспринимать рецепторы - особые нервные окончания.

Что такое рецептор и какого его назначение в организме

Рецепторы — это совокупность окончаний нервных волокон, обладающих высокой чувствительностью и способностью к восприятию множества внутренних факторов и внешних раздражителей, их преобразованию в готовый импульс для передачи в головной мозг. Другими словами, любая информация, получаемая человеком извне, имеет способность улавливаться и правильно восприниматься человеческим организмом именно благодаря рецепторам, которых там огромное множество.

Виды рецепторов и их классификация

Для каждого ощущения, научно называемого раздражителем, существует свой вид анализатора, который способен преобразовать его в доступный для нервной системы импульс. Чтобы лучше понимать, что такое рецепторы, сначала нужно разобраться в их классификации.

Рецепторы могут различаться по месту локализации и типу принимаемых сигналов:

  • экстерорецепторы - это вкусовые, зрительные, слуховые и осязательные рецепторы;
  • интерорецепторы - отвечающие за опорно-двигательный аппарат и контроль внутренних органов.

Еще рецепторы человека классифицируются в зависимости от формы проявления раздражителя:

  • хеморецепторы — рецепторы обоняния, языка и сосудов;
  • механорецепторы- вестибулярные, тактильные, слуховые;
  • терморецепторы- кожные и рецепторы внутренних органов;
  • фоторецепторы — зрительные;
  • ноцицептивные (болевые) рецепторы.

Рецепторы также различают по способности к количественной передаче импульсов:

  • мономодальные — способны передавать лишь один вид раздражителя (слуховые, зрительные);
  • полимодальные — могут воспринимать несколько видов (болевые рецепторы).

Принципы функционирования рецепторов

Рассмотрев изложенную классификацию, можно сделать вывод о том, что восприятие распределяется в зависимости от видов ощущений, для которых в организме существуют определенные сенсорные системы, различающиеся между собой функциональными особенностями, а именно:

  • вкусовая система (рецепторы языка);
  • обонятельная система;
  • зрительная система;
  • вестибулярный аппарат (моторика, движение);
  • слуховая сенсорная система (слуховые рецепторы).

Рассмотрим каждую из этих систем более подробно. Только так можно до конца понимать, что такое рецепторы.

Вкусовая сенсорная система

Основным органом в этой системе является язык, благодаря рецепторам которого человеческий мозг способен оценить качество и вкус употребляемой пищи и напитков.

На языке располагаются механорецепторы, способные оценить консистенцию продуктов, терморецепторы, определяющие уровень температуры пищи и хеморецепторы, непосредственно занимающиеся определением вкуса. Рецепторы языка располагаются во вкусовых сосочках (почках), содержащих в себе набор белков, которые при контакте с раздражителем меняют свои химические свойства, тем самым образуя нервный импульс для передачи в мозг. Они способны различать четыре типа вкусов:

  • соленый - передняя часть языка (кроме кончика);
  • горький - задняя часть органа;
  • кислый - боковые рецепторы;
  • сладкий - рецепторы кончика языка.

Но только в совокупности с обонятельной системой человеческий мозг способен оценить полноту передаваемых рецепторами ощущений и, в случае чего, уберечь от непригодных к употреблению продуктов.

Обонятельная сенсорная система

Основным органом в данной системе служит нос. Система получила свое название благодаря содержанию в ней обонятельных желез, в которых образуются одноименные клетки. При реакции с раздражителем они образуют обонятельные нити для передачи в полость черепной коробки, а затем в мозг. Обонятельная система состоит из:

  • воспринимающего (органы обоняния);
  • проводникового (обонятельный нерв);
  • центрального отделов (обонятельная луковица).

Иными словами, раздражитель улавливается обонятельными рецепторами, передается по обонятельному нерву к луковице, которая связана ветвями с подкоркой переднего мозга.

Зрительная сенсорная система

Одна из наиболее значимых систем в жизни человека и имеющая сложное строение. Основными органами в зрительной системе являются глаза. Рассмотрим, что такое рецепторы глаз. Сетчатка глаза представляет собой центр нервных окончаний, в котором осуществляется обработка поступающих сигналов и преобразование их в импульсы, готовые для передачи в головной мозг. Сигналы передаются благодаря специальным клеткам с различными функциями:

  • фоторецепторы (колбочки и палочки);
  • ганглиозные клетки;
  • биполярные клетки.

Благодаря светочувствительным клеткам зрительный анализатор осуществляет восприятие цветного изображения в дневное и сумеречное время суток со скоростью в 720 м/с.

Вестибулярный аппарат

Рецепторы этой системы являются вторичными сенсорными клетками, не имеющими собственных нервных окончаний. Передача импульсов осуществляется при изменении положения головы или тела по отношению к окружающему пространству. Благодаря получаемым импульсам, человеческий организм способен поддерживать нужное положение тела. Важной частью этой системы является мозжечок, который улавливает вестибулярные афференты.

Слуховая сенсорная система

Система, благодаря которой есть возможность улавливать любые звуковые колебания. Орган слуха содержит следующие рецепторы:

  • кортиев орган — воспринимает звуковые раздражители;
  • рецепторы, необходимые для поддержания равновесия тела.

Слуховые рецепторы располагаются в улитке внутреннего уха и воспринимают звуковые колебания с помощью вспомогательных образований.

В классификации рецепторов центральное место занимает их деление в зависимости от вида воспринимаемого раздражителя. Существует пять типов таких рецепторов. 1. Механорецепторы возбуждаются при их механической деформации, расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах. 2. Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости. Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге. 3. Терморецепторы воспринимают изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге. 4. Фоторецепторы в сетчатке глаза воспринимают световую энергию. 5. Ноцицепторы, возбуждение которых сопровождается болевыми ощущениями. Раздражителями этих рецепторов являются механические, термические и химические факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах. С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

По расположению в организме рецепторы делят на экстеро- и интерорецепторы. К экстерорецепторам относятся рецепторы кожи, видимых слизистых оболочек и органов чувств: зрительные, слуховые, вкусовые, обонятельные, тактильные, болевые и температурные. К ин-терорецепторам относятся рецепторы внутренних органов, сосудов и ЦНС. Разновидностью интерорецепторов являются рецепторы опорно-двигательного аппарата (проприорецепторы) и вестибулярные рецепторы. Если одна и та же разновидность рецепторов локализована как в ЦНС (в продолговатом мозге), так и в других местах (сосудах), то такие рецепторы подразделяют на центральные и периферические. По скорости адаптации рецепторы делят на три группы: быстро адаптирующиеся (фазные), медленно адаптирующиеся (тонические) и смешанные (фазнотонические), адаптирующиеся со средней скоростью. Примером быстро адаптирующихся рецепторов являются рецепторы вибрации (тельца Пачини) и прикосновения (тельца Мейснера) к коже. К медленно адаптирующимся рецепторам относятся проприорецепторы, рецепторы растяжения легких, болевые рецепторы. Со средней скоростью адаптируются фоторецепторы сетчатки, терморецепторы кожи. По структурно-функциональной организации различают первичные и вторичные рецепторы. Первичные рецепторы представляют собой чувствительные окончания дендрита афферентного нейрона. Тело нейрона расположено в спинно-мозговом ганглии или в ганглии черепных нервов. В первичном рецепторе раздражитель действует непосредственно на окончания сенсорного нейрона. Первичные рецепторы являются филогенетически более древними структурами, к ним относятся обонятельные, тактильные, температурные, болевые рецепторы и проприорецепторы. Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона. Это клетка, например фоторецептор, эпителиальной природы или нейроэктодермального происхождения. Данная классификация позволяет понять, как возникает возбуждение рецепторов. Реце́птор - сложное образование, состоящие из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс. Рецепторы человека. Рецепторы кожи. Болевые рецепторы. Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность. Тельца Мейснера - рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность. Тельца Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями. Рецепторы волосяных луковиц - реагируют на отклонение волоса. Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями. Колба Краузе - рецептор, реагирующий на холод. Рецепторы мышц и сухожилий

Мышечные веретена - рецепторы растяжения мышц, бывают двух типов: с ядерной сумкой, с ядерной цепочкой. Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его. Рецепторы связок В основном представляют собой свободные нервные окончания, меньшая группа - инкапсулированные. Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини. Рецепторы сетчатки глаза. Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент - это и есть основа цветового зрения. Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны). Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A.

15. Преобразование энергии раздражителя в рецепторах. Рецепторный и генераторный потенциалы. Закон Вебера-Фехнера. Абсолютный и дифференциальный пороги чувствительности .

Этапы преобразования энергии внешнего раздражителя в энергию нервных импульсов. Действие раздражителя. Внешний стимул взаимодействует со специфическими мембранными структурами окончаний чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе), что приводит к изменению ионной проницаемости мембраны. Генерация рецепторного потенциала. В результате изменения ионной проницаемости происходит изменение мембранного потенциала (деполяризация или гиперполяризация) чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе). Изменение мембранного потенциала, наступающее в результате действия раздражителя, называют рецепторным потенциалом (РП). Распространение рецепторного потенциала. В первичном рецепторе РП распространяется электротонически и достигает ближайшего перехвата Ранвье. Во вторичном рецепторе РП электротонически распространяется по мембране рецептирующей клетки и достигает пресинаптической мембраны, где вызывает выделение медиатора. В результате срабатывания синапса (между рецептирующей клеткой и чувствительным нейроном) происходит деполяризация постсинаптической мембраны чувствительного нейрона (ВПСП). Образовавшийся ВПСП распространяется электротонически по дендриту чувствительного нейрона и достигает ближайшего перехвата Ранвье. В области перехвата Ранвье РП (в первичном рецепторе) или ВПСП (во вторичном рецепторе) преобразуется в серию ПД (нервных импульсов). Образовавшиеся нервные импульсы проводятся по аксону (центральному отростку) чувствительного нейрона в ЦНС. Поскольку РП генерирует образование серии ПД, его часто называют генераторным потенциалом. Закономерности преобразования энергии внешнего раздражителя в серию нервных импульсов: чем выше сила действующего раздражителя, тем больше амплитуда РП; чем больше амплитуда РП, тем больше частота нервных импульсов. Рецепторный и генераторный потенциалы - это частные случаи электротонических потенциалов. Когда рецепторная (сенсорная) клетка, например механочувствительная волосковая или вкусовая, подвергается воздействию соответствующего стимула, реализуется более или менее сложный набор событий, ведущих к изменениям электрической полярности участка их мембраны. Это явление именуется рецепторным потенциалом. В большинстве случаев рецепторные потенциалы - это деполяризация, в других, однако, в частности в палочках и колбочках сетчатки, - это гиперполяризация. Так или иначе, результат - одни и тот же - возникают токи между подвергающимся воздействию участком мембраны и другими участками мембраны рецепторной клетки. В общем случае, изменения электрической полярности (увеличение ее или уменьшение) влияет на выделение медиатора на подлежащий сенсорный нейрон. Не все сенсорные системы развили специализированные сенсорные клетки. Обонятельные и некоторые механорецептивные системы построены на нейросенсорных клетках. В таких случаях функции детектирования соответствующих факторов внешней среды и передачи информации в мозг совмещаются в одной клетке. Электрофизиологические феномены при этом аналогичны только что описанным. Когда чувствительные окончания нейросенсорной клетки подвергаются воздействию стимула, ряд биохимических процессов приводит к изменению электрического потенциала (в случае нейросенсорных клеток - это всегда деполяризация). Механизмом локальных токов таков, что деполяризация распространяется в область мембраны, изобилующую потенциал-зависимыми Na+-каналами. Если деполяризация достаточно велика, Na+-каналы открываются, в результате чего генерируется потенциал действия, который без декремента передается в центральную нервную систему. Поскольку первоначальная деполяризация происходит не в специальной рецепторной клетке, она часто именуется генераторным потенциалом. Многие, однако, оба варианта называют рецепторными потенциалами. Амплитуда генераторных и рецепторных потенциалов зависит от величины стимула - между потенциалом и интенсивностью стимула существует практически прямая пропорциональная зависимость. Из-за того, что локальные токи должны быть достаточно значительными по величине, чтобы запустить выделение медиатора или активировать хотя бы часть популяции потенциал-зависимых Na+-каналов до порогового уровня, запуск потенциала действия в сенсорном нерве наблюдается только, когда рецепторный или генераторный потенциал достигают определенной амплитуда. Иными словами, потенциал действия не генерируется до тех пор, пока стимул не достигнет критической величины. Закон Вебера - Фехнера - эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула.

В статье рассказывается о том, что такое рецепторы, для чего они служат человеку, и, в частности, рассматривается тема антагонистов рецепторов.

Биология

Жизнь на нашей планете существует почти 4 млрд лет. За этот непостижимый для человеческого восприятия срок на ней сменилось множество и, вероятно, процесс этот будет продолжаться вечно. Но если рассматривать с научной точки зрения любой биологический организм, то его устройство, слаженность и вообще сам факт существования удивительны, и касается это даже самых простых видов. А про тело человека и говорить нечего! Любая область его биологии по-своему уникальна и интересна.

Мы же в этой статье рассмотрим, что такое рецепторы, зачем они нужны и какими бывают. В этом мы постараемся разобраться как можно подробнее.

Действие

Согласно данным энциклопедии, рецептор - это объединение окончаний нервных волокон у некоторых нейронов, отличающихся чувствительностью, и специфических образований и специальных клеток живых тканей. Все вместе они занимаются тем, что превращают влияние факторов различного рода, которые часто именуют раздражителями, в особый Теперь мы знаем, что такое рецептор.

Некоторые виды рецепторов человека воспринимают информацию и воздействие посредством специальных клеток эпителиального происхождения. Помимо этого, в обработке информации о раздражителях принимают участие также видоизмененные нервные клетки, но отличие их в том, что сами по себе нервные импульсы они генерировать не могут, а лишь действуют на иннервирующие окончания. К примеру, так работают вкусовые рецепторы (они расположены в эпителии на поверхности языка). Действие их основано на хеморецепторах, которые отвечают за восприятие и обработку воздействия химических или летучих веществ.

Теперь мы знаем, что такое и как они работают.

Назначение

Говоря проще, рецепторы отвечают за работу практически всех органов чувств. И помимо самых очевидных, таких как зрение или слух, они дают возможность человеку ощущать и иные явления: давление, температуру, влажность и прочее. Так что мы разобрали вопрос, что такое рецепторы. Но рассмотрим их подробнее.

Стимулами, которые активируют те или иные рецепторы, могут служить очень различные эффекты и действия, к примеру деформация механического свойства (раны и порезы), агрессия химических веществ и даже электрическое или магнитное поле! Правда, какие рецепторы отвечают за восприятие последних, пока точно не установлено. Известно лишь, что такие точно есть, но развиты у всех по-разному.

Виды

Делятся на виды они по расположению в теле и раздражителю, благодаря которому мы получаем сигналы в нервные окончания. Рассмотрим более подробно по адекватному раздражителю:

  • Хеморецепторы - отвечают за вкус и обоняние, работа их основана на воздействии летучих и иных химических веществ.
  • Осморецепторы - участвуют в определении изменения осмотической жидкости, т. е. на повышение или понижение (это что-то вроде баланса между внеклеточной и внутриклеточной жидкостями).
  • Механорецепторы - принимают сигналы, основанные на физическом воздействии.
  • Фоторецепторы - благодаря им наши глаза принимают видимый спектр света.
  • Терморецепторы - отвечают за восприятие температуры.
  • Болевые рецепторы.

рецепторов?

Если говорить проще, то это те вещества, которые могут связываться с рецепторами, но не меняют хода их работы. А агонист, напротив, не только связывается, но и активно влияет на рецептор. К примеру, к последним относятся некоторые наркотические вещества, используемые для анестезии. Они лишают рецептор чувствительности. Если же их называют частичными, то и действие их неполное.

Рецепторы (лат. receptor принимающий) - специализированные чувствительные образования, реагирующие на адекватные для организации стимулы (раздражители).

Различают сенсорные и клеточные рецепторы. Сенсорные рецепторы человека и высших животных и приспособлены для восприятия раздражителей внешней (экстерорецепторы, или дистантные, рецепторы) и внутренней (интерорецепторы) среды организма. Эти рецепторы являются периферическим звеном анализаторов. Во многих случаях они представляют собой сложно устроенный вспомогательный аппарат, зависимости от типа воспринимаемого раздражителя (механического, химического, температурного, светового) рецепторы делят на механорецепторы, хеморецепторы, терморецепторы, фоторецепторы и т.п. Выделяют также осморецепторы, которые реагируют на изменения осмотического давления жидких сред организма, барорецепторы - они реагируют на изменение АД, тензорецепторы, реагирующие на растяжение тканей или органов, в которых они расположены (проприорецепторы опорно-двигательного аппарата - мышечные веретена, сухожильные рецепторы).
В сенсорных рецепторы происходит преобразование энергии различных раздражителей в биоэлектрические сигналы, которые по афферентным нервным волокнам в виде волны возбуждения передаются в ц.н.с., где подвергаются соответствующей обработке.

Сенсорные рецепторы по структурным особенностям делят на первично- и вторично-чувствующие рецепторы. В первично-чувствующих рецепторы в восприятие раздражителя осуществляется непосредственно (т.е. первично) нервными окончаниями сенсорного нейрона. У вторично-чувствующих рецепторы между раздражителем и сенсорным нейроном находится специализированная клетка, из которой при действии раздражителя выделяется медиатор, действующий непосредственно на воспринимающие окончания сенсорного нейрона. К рецепторам первого типа относятся нервно-мышечные и нервно-сухожильные веретена и обонятельные нервные клетки, к рецепторам второго типа - рецепторы органов зрения, слуха, вкуса, вестибулярного аппарата и др.
Многие рецепторы имеют вспомогательный аппарат различной степени сложности, например капсула у инкапсулированных тканевых рецепторов, звукопроводящие структуры органа слуха и т.д.

Важнейшей характеристикой рецепторов является их высокая чувствительность к действию адекватного раздражителя. Наименьшая сила раздражителя, вызывающая возбуждение рецептора и его проведение по афферентным нервным волокнам характеризует абсолютный порог чувствительности рецепторы. На его величину могут влиять различные биологически активные вещества, приносимые к рецептору с кровью, деятельность нервной системы и т.д.

К клеточным рецепторам в биохимии, фармакологии, иммунологии относят молекулярные структуры, расположенные на поверхности мембраны клетки или внутри нее. Они избирательно связываются с гормонами, медиаторами и другими биологически активными веществами (лигандами) с последующими физиологическими и (или) биохимическими изменениями состояния панной клетки (ткани).

Наиболее объективные представления о работе рецепторов можно получить при регистрации биоэлектрических потенциалов Р.
и афферентных нервных волокон в процессе стимуляции рецептора адекватным раздражителем; существуют также морфологические, гистохимические, клеточно-молекулярные методические подходы к изучению рецептора. Исследование рецептора у человека проводят преимущественно с помощью психофизиологических методов.

ПАТОЛОГИЯ рецептора чаще всего связана с поражением афферентных нервных волокон. Поражение может быть обусловлено токсическими воздействиями, влиянием сильных или сверхсильных раздражителей (например, яркий свет способен вызвать офтальмию, сильный звук тугоухость или глухоту). Нарушения нормальной деятельности рецептора могут быть связаны также с патологией тканей и органов, в которых они расположены. При этом патологические изменения, затрагивающие отдельные структуры вспомогательного аппарата рецептора, могут быть обратимы. Повреждения собственно рецептирующих структур чаще всего носят необратимый характер и не поддаются лечению. Нарушения клеточной рецепции играют важную роль в механизмах развития многих заболеваний человека (например, диабета сахарного, некоторых видов иммунной недостаточности).