Найти точку максимума производной. Нахождение точек максимума (мин) функции. Логарифмы

77419.Найдите точку максимума функции у=х 3 –48х+17

Найдем нули производной:

Получим корни:

Определим знаки производной функции подставляя значения из интервалов в полученную производную, и изобразим на рисунке поведение функции:

Получили, что в точке –4 производная меняет свой знак в положительного на отрицательный. Таким образом, точка х=–4 это искомая точка максимума.

Ответ: –4

77423. Найдите точку максимума функции у=х 3 –3х 2 +2

Найдём производную заданной функции:

Приравняем производную к нулю и решим уравнение:

В точке х=0 производная меняет знак с положительного на отрицательный, значит это есть точка максимума.

77427. Найдите точку максимума функции у=х 3 +2х 2 +х+3

Найдём производную заданной функции:

При равняем производную к нулю и решим уравнение:

Определим знаки производной функции и изобразим на рисунке интервалы возрастания и убывания функции подставляя значения из каждого интервала в выражение производной:


В точке х=–1 производная меняет знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: –1

77431. Найдите точку максимума функции у=х 3 –5х 2 +7х–5

Найдём производную функции:

Найдем нули производной:

3х 2 – 10х + 7 = 0

3∙0 2 – 10∙0 + 7 = 7 > 0

3∙2 2 – 10∙2 + 7 = – 1< 0

3∙3 2 – 10∙3 + 7 = 4 > 0

В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

77435. Найдите точку максимума функции у=7+12х–х 3

Найдём производную функции:

Найдем нули производной:

12 – 3х 2 = 0

Решая квадратное уравнение получим:

*Это точки возможного максимума (минимума) функции.

Построим числовую ось, отметим нули производной. Определим знаки производной, подставляя произвольное значение из каждого интервала в выражение производной функции и схематично изобразим возрастание и убывание на интервалах:

12 – 3∙(–3) 2 = –15 < 0

12 – 3∙0 2 = 12 > 0

12 – 3∙3 2 = –15 < 0

В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

*Для этой же функции точкой минимума является точка х = – 2.

77439. Найдите точку максимума функции у=9х 2 –х 3

Найдём производную функции:

Найдем нули производной:

18х –3х 2 = 0

3х(6 – х) = 0

Решая уравнение получим:

*Это точки возможного максимума (минимума) функции.

Построим числовую ось, отметим нули производной. Определим знаки производной, подставляя произвольное значение из каждого интервала в выражение производной функции и схематично изобразим возрастание и убывание на интервалах:

18 (–1) –3 (–1) 2 = –21< 0

18∙1 –3∙1 2 = 15 > 0

18∙7 –3∙7 2 = –1 < 0

В точке х=6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

*Для этой же функции точкой минимума является точка х = 0.

Точки максимума и минимума являются точками экстремума функции, которые находятся по определенному алгорифму. Это является главным показателем при изыскании функции. Точка x0 является точкой минимума, если для всех x из определенной окрестности x0 выполняется неравенство f(x) ? f(x0) (для точки максимума объективно обратное неравенство f(x) ? f(x0)).

Инструкция

1. Обнаружьте производную функции. Производная характеризует метаморфоза функции в определенной точке и определяется как предел отношения приращения функции к приращению довода, тот, что тяготится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Скажем, производная функции y = x3 будет равна y’ = x2.

2. Приравняйте данную производную к нулю (в данном случае x2=0).

3. Обнаружьте значение переменной данного выражения. Это будут те значения, при которых данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры взамен x, при которых все выражение станет нулевым. Скажем:2-2×2= 0(1-x)(1+x) = 0x1= 1, x2 = -1

4. Полученные значения нанесите на координатную прямую и высчитайте знак производной для всего из полученных интервалов. На координатной прямой отмечаются точки, которые принимаются за предисловие отсчета. Дабы высчитать значение на интервалах подставьте произвольные значения, подходящие по критериям. Скажем, для предыдущей функции до интервала -1 дозволено предпочесть значение -2. На интервале от -1 до 1 дозволено предпочесть 0, а для значений огромнее 1 выберите 2. Подставьте данные цифры в производную и узнаете знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. негативно и на данном интервале будет стоять знак минус. Если x=0, то значение будет равно 2, а значит на данном интервале ставится позитивный знак. Если x=1, то производная также будет равна -0,24 и потому ставится минус.

5. Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Точки максимума функции наравне с точками минимума именуются точками экстремума. В этих точках функция меняет нрав поведения. Экстремумы определяются на ограниченных числовых промежутках и неизменно являются локальными.

Инструкция

1. Процесс нахождения локальных экстремумов именуется изысканием функции и выполняется путем обзора первой и 2-й производной функции. Перед началом изыскания удостоверитесь, что данный промежуток значений довода принадлежит к возможным значениям. Скажем, для функции F=1/x значение довода х=0 неприемлемо. Либо для функции Y=tg(x) довод не может иметь значение х=90°.

2. Удостоверитесь, что функция Y дифференцируема на каждому заданном отрезке. Обнаружьте первую производную Y’. Видимо, что до достижения точки локального максимума функция повышается, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость метаморфозы функции. Пока функция нарастает, скорость этого процесса является величиной позитивной. При переходе через локальный максимум функция начинает убывать, и скорость процесса метаморфозы функции становится негативной. Переход скорости метаморфозы функции через нуль происходит в точке локального максимума.

3. Следственно, на участке возрастания функции ее первая производная позитивна для всех значений довода на этом промежутке. И напротив - на участке убывания функции значение первой производной поменьше нуля. В точке локального максимума значение первой производной равно нулю. Видимо, дабы обнаружить локальный максимум функции, нужно обнаружить точку х?, в которой первая производная этой функции равна нулю. При любом значении довода на исследуемом отрезке хх? — негативной.

4. Для нахождения х? решите уравнение Y’=0. Значение Y(х?) будет локальным максимумом, если вторая производная функции в этой точке поменьше нуля. Обнаружьте вторую производную Y», подставьте в полученное выражение значение довода х= х? и сравните итог вычислений с нулем.

5. Скажем, функция Y=-x?+x+1 на отрезке от -1 до 1 имеет постоянную производную Y’=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y»=-2. Постройте по точкам график функции Y=-x?+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Видео по теме

Полезный совет
Для нахождения производной существуют онлайн-сервисы, которые подсчитывают надобные значения и выводят итог. На таких сайтах дозволено обнаружить производную до 5 порядка.

Алгоритм нахождения данных точек оговаривался уже неоднократно, кратко повторюсь:

1. Находим производную функции.

2. Находим нули производной (приравниваем производную к нулю и решаем уравнение).

3. Далее строим числовую ось, на ней отмечаем найденные точки и определяем знаки производной на полученных интервалах. *Это делается путём подстановки произвольных значений из интервалов в производную.

Если вы совсем не знакомы со свойствами производной для исследования функций, то обязательно изучите статью « ». Также повторите таблицу производных и правила дифференцирования (имеются в этой же статье). Рассмотрим задачи:

77431. Найдите точку максимума функции у = х 3 –5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 – 10х + 7 = 0

у(0) " = 3∙0 2 – 10∙0 + 7 = 7 > 0

у(2) " = 3∙2 2 – 10∙2 + 7 = – 1< 0

у(3) " = 3∙3 2 – 10∙3 + 7 = 4 > 0

В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 1

77432. Найдите точку минимума функции у = х 3 +5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 + 10х + 7 = 0

Решая квадратное уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) " = 3∙(–3) 2 + 10∙(–3) + 7 = 4 > 0

у( –2 ) "= 3∙(–2) 2 + 10∙(–2) + 7 = –1 < 0

у(0 ) "= 3∙0 2 – 10∙0 + 7 = 7 > 0


В точке х = –1 производная меняет свой знак с отрицательного на положительный, значит это есть искомая точка минимума.

Ответ: –1

77435. Найдите точку максимума функции у = 7+12х–х 3

Найдём производную функции:

Найдем нули производной:

12 – 3х 2 = 0

х 2 = 4

Решая уравнение получим:

*Это точки возможного максимума (минимума) функции.

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) "= 12 – 3∙(–3) 2 = –15 < 0

у(0 ) "= 12 – 3∙0 2 = 12 > 0

у( 3 ) "= 12 – 3∙3 2 = –15 < 0

В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 2

*Для этой же функции точкой минимума является точка х = – 2.

77439. Найдите точку максимума функции у = 9х 2 – х 3 .

Найдём производную функции:

Найдем нули производной:

18х –3х 2 = 0

3х(6 – х) = 0

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –1 ) "= 18 (–1) –3 (–1) 2 = –21< 0

у(1 ) "= 18∙1 –3∙1 2 = 15 > 0

у(7 ) "= 18∙7 –3∙7 2 = –1< 0

В точке х = 6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 6

*Для этой же функции точкой минимума является точка х = 0.

77443. Найдите точку максимума функции у = (х 3 /3)–9х–7.

Найдём производную функции:

Найдем нули производной:

х 2 – 9 = 0

х 2 = 9

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –4 ) "= (–4) 2 – 9 > 0

у(0 ) "= 0 2 – 9 < 0

у(4 ) "= 4 2 – 9 > 0

В точке х = – 3 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: – 3

9 – х 2 = 0

х 2 = 9

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –4 ) "= 9 – (–4) 2 < 0

у(0 Решение .

На этом всё. Успеха вам!

С уважением, Александр Крутицких .

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Здравствуйте, Дорогие друзья! Продолжаем рассматривать задания связанные с исследованием функций. Рекомендую , необходимую для решения задач на нахождение максимального (минимального) значения функции и на нахождение точек максимума (минимума) функции.

Задачи с логарифмами на нахождение наибольшего (наименьшего) значения функции мы . В этой статье рассмотрим три задачи, в которых стоит вопрос нахождения точек максимума (минимума) функций, при чём в заданной функции присутствует натуральный логарифм.

Теоретический момент:

По определению логарифма – выражение стоящее под знаком логарифма должно быть больше нуля. *Это обязательно нужно учитывать не только в данных задачах, но и при решении уравнений и неравенств содержащих логарифм.

Алгоритм нахождения точек максимума (минимума) функции:

1. Вычисляем производную функции.

2. Приравниваем её к нулю, решаем уравнение.

3. Полученные корни отмечаем на числовой прямой. *Также на ней отмечаем точки, в которых производная не существует. Получим интервалы, на которых функция возрастает или убывает.

4. Определяем знаки производной на этих интервалах (подставляя произвольные значения из них в производную).

5. Делаем вывод.

Найдите точку максимума функции у = ln (х–11)–5х+2

Сразу запишем, что х–11>0 (по определению логарифма), то есть х > 11.

Рассматривать функцию будем на интервале (11;∞).

Найдем нули производной:

Точка х = 11 не входит в область определения функции и в ней производная не существует. Отмечаем на числовой оси две точки 11 и 11,2. Определим знаки производной функции, подставляя произвольные значения из интервалов (11;11,2) и (11,2;+∞) в найденную производную, и изобразим на рисунке поведение функции:

Таким образом, в точке х=11,2 производная функции меняет знак с положительного на отрицательный, значит это искомая точка максимума.

Ответ: 11,2

Решите самостоятельно:

Найдите точку максимума функции у=ln (х+5)–2х+9.

Найдите точку минимума функции у=4х– ln (х+5)+8

Сразу запишем, что х+5>0 (по свойству логарифма), то есть х>–5.

Рассматривать функцию будем на интервале (– 5;+∞).

Найдём производную заданной функции:

Найдем нули производной:

Точка х = –5 не входит в область определения функции и в ней производная не существует. Отмечаем на числовой оси две точки –5 и –4,75 . Определим знаки производной функции, подставляя произвольные значения из интервалов (–5;–4,75) и (–4,75;+∞) в найденную производную, и изобразим на рисунке поведение функции:

Таким образом, в точке х= –4,75 производная функции меняет знак с отрицательного на положительный, значит это искомая точка минимума.

Ответ: – 4,75

Решите самостоятельно:

Найдите точку минимума функции у=2х–ln (х+3)+7.

Найдите точку максимума функции у = х 2 –34х+140lnх–10

По свойству логарифма выражение, стоящее под его знаком больше нуля, то есть х > 0.

Функцию будем рассматривать на интервале (0; +∞).

Найдём производную заданной функции:

Найдем нули производной:

Решая квадратное уравнение, получим: D = 9 х 1 = 10 х 2 = 7.

Точка х = 0 не входит в область определения функции и в ней производная не существует. Отмечаем на числовой оси три точки 0, 7 и 10 .

Ось ох разбивается на интервалы: (0;7), (7;10), (10; +∞).

Определим знаки производной функции, подставляя произвольные значения из полученных интервалов в найденную производную, и изобразим на рисунке поведение функции:

На этом всё. Успехов вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.