Система уравнений называется совместной если. Несовместные системы. Системы с общим решением. Частные решения

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

I. Постановка задачи.

II. Совместность однородных и неоднородных систем.

III. Система т уравнений с т неизвестными. Правило Крамера.

IV. Матричный метод решения систем уравнений.

V. Метод Гаусса.

I. Постановка задачи.

Систему уравнений вида

называют системой m линейных уравнений с n неизвестными
. Коэффициенты уравнений этой системы записывают в виде матрицы

которую называют матрицей системы (1).

Числа, стоящие в правых частях уравнений, образуют столбец свободных членов {B }:

.

Если столбец {B }={0 }, то система уравнений называется однородной . В противном случае, когда {B }≠{0 } – система неоднородна .

Система линейных уравнений (1) может быть записана в матричном виде

[A ]{x }={B }. (2)

Здесь - столбец неизвестных.

Решить систему уравнений (1) - значит найти совокупность n чисел
такую, что при подстановке в систему (1) вместо неизвестных
каждое уравнение системы обращается в тождество. Числа
называются решением системы уравнений.

Система линейных уравнений может иметь одно решение

,

может иметь бесчисленное множество решений

или не иметь решений совсем

.

Системы уравнений, не имеющие решений, называются несовместными . Если система уравнений имеет хотя бы одно решение, то она называетсясовместной . Система уравнений называетсяопределенной , если она имеет единственное решение, инеопределенной , если имеет бесчисленное множество решений.

II. Совместность однородных и неоднородных систем.

Условие совместности системы линейных уравнений (1) формулируется в теореме Кронекера-Капелли : система линейных уравнений имеет хотя бы одно решение в том и только в том случае, когда ранг матрицы системы равен рангу расширенной матрицы:
.

Расширенной матрицей системы называют матрицу, получающуюся из матрицы системы приписыванием к ней справа столбца свободных членов:

.

Если RgA A * , то система уравнений несовместна.

Однородные системы линейных уравнений в соответствии с теоремой Кронекера-Капелли всегда совместны. Рассмотрим случай однородной системы, в которой число уравнений равно числу неизвестных, то есть т=п . Если определитель матрицы такой системы не равен нулю, т.е.
, однородная система имеет единственное решение, которое является тривиальным (нулевым). Однородные системы имеют бесчисленное множество решений, если среди уравнений системы есть линейно зависимые, т.е.
.

Пример. Рассмотрим однородную систему трех линейных уравнений с тремя неизвестными:

и исследуем вопрос о количестве ее решений. Каждое из уравнений можно считать уравнением плоскости, проходящей через начало координат (D =0 ). Система уравнений имеет единственное решение, когда все три плоскости пересекаются в одной точке. При этом их нормальные векторы некомпланарны, и, следовательно, выполняется условие

.

Решение системы при этом x =0, y =0, z =0 .

Если хотя бы две из трех плоскостей, например, первая и вторая, параллельны, т.е. , то определитель матрицы системы равен нулю, а система имеет бесчисленное множество решений. Причем решениями будут координатыx , y , z всех точек, лежащих на прямой

Если же все три плоскости совпадают, то система уравнений сведется к одному уравнению

,

а решением будут координаты всех точек, лежащих в этой плоскости.

При исследовании неоднородных систем линейных уравнений вопрос о совместности решается с помощью теоремы Кронекера-Капелли. Если же число уравнений в такой системе равно числу неизвестных, то система имеет единственное решение, если ее определитель не равен нулю. В противном случае система либо несовместна, либо имеет бесчисленное множество решений.

Пример . Исследуем неоднородную систему двух уравнений с двумя неизвестными

.

Уравнения системы можно рассматривать как уравнения двух прямых на плоскости. Система несовместна, когда прямые параллельны, т.е.
,
. В этом случае ранг матрицы системы равен 1:

RgA =1 , т.к.
,

а ранг расширенной матрицы
равен двум, т. к. для нее в качестве базисного минора может быть выбран минор второго порядка, содержащий третий столбец.

В рассматриваемом случае RgA A * .

Если прямые совпадают, т.е. , то система уравнений имеет бесчисленное множество решений: координаты точек на прямой
. В этом случаеRgA = RgA * =1.

Система имеет единственное решение, когда прямые не параллельны, т.е.
. Решением этой системы являются координаты точки пересечения прямых

III. Система т уравнений с т неизвестными. Правило Крамера.

Рассмотрим простейший случай, когда число уравнений системы равно числу неизвестных, т.е. m = n . Если детерминант матрицы системы отличен от нуля, решение системы может быть найдено по правилу Крамера:

(3)

Здесь
- определитель матрицы системы,

- определитель матрицы, получаемой из [A ] заменой i -ого столбца на столбец свободных членов:

.

Пример . Решить систему уравнений методом Крамера.

Решение :

1) найдем определитель системы

2) найдем вспомогательные определители

3) найдем решение системы по правилу Крамера:

Результат решения может быть проверен подстановкой в систему уравнений

Получены верные тождества.

IV. Матричный метод решения систем уравнений.

Запишем систему линейных уравнений в матричном виде (2)

[A ]{x }={B }

и умножим правую и левую части соотношения (2) слева на матрицу [A -1 ], обратную матрице системы:

[A -1 ][A ]{x }=[A -1 ]{B }. (2)

По определению обратной матрицы произведение [A -1 ][A ]=[E ], а по свойствам единичной матрицы [E ]{x }={x }. Тогда из соотношения (2") получаем

{x }=[A -1 ]{B }. (4)

Соотношение (4) лежит в основе матричного метода решения систем линейных уравнений: необходимо найти матрицу, обратную матрице системы, и умножить на нее слева вектор-столбец правых частей системы.

Пример . Решим матричным методом систему уравнений, рассмотренную в предыдущем примере.

Матрица системы
ее определитель detA ==183 .

Столбец правых частей
.

Чтобы найти матрицу [A -1 ], найдем матрицу, присоединенную к [A ]:

или

В формулу для вычисления обратной матрицы входит
, тогда

Теперь можно найти решение системы

Тогда окончательно получаем .

V. Метод Гаусса.

При большом числе неизвестных решение системы уравнений методом Крамера или матричным методом связано с вычислением определителей высокого порядка или обращением матриц больших размеров. Эти процедуры весьма трудоемки даже для современных ЭВМ. Поэтому для решения систем большого числа уравнений чаще пользуются методом Гаусса.

Метод Гаусса заключается в последовательном исключении неизвестных путем элементарных преобразований расширенной матрицы системы. К элементарным преобразованиям матрицы относят перестановку строк, сложение строк, умножение строк на числа, отличные от нуля. В результате преобразований удается матрицу системы свести к верхней треугольной, на главной диагонали которой стоят единицы, а ниже главной диагонали - нули. В этом заключается прямой ход метода Гаусса. Обратный ход метода состоит в непосредственном определении неизвестных, начиная с последнего.

Проиллюстрируем метод Гаусса на примере решения системы уравнений

На первом шаге прямого хода добиваются того, чтобы коэффициент
преобразованной системы стал равен 1 , а коэффициенты
и
обратились в ноль. Для этого первое уравнение умножим на1/10 , второе уравнение умножим на 10 и сложим с первым, третье уравнение умножим на -10/2 и сложим с первым. После этих преобразований получим

На втором шаге добиваемся того, чтобы после преобразований коэффициент
стал равным1 , а коэффициент
. Для этого второе уравнение разделим на 42 , а третье уравнение умножим на -42/27 и сложим со вторым. Получим систему уравнений

На третьем шаге должны получить коэффициент
. Для этого третье уравнение разделим на(37 - 84/27) ; получим

На этом прямой ход метода Гаусса заканчивается, т.к. матрица системы сведена к верхней треугольной:

Осуществляя обратный ход, найдем неизвестные

где x * - один из решений неоднородной системы (2) (например (4)), (E−A + A) образует ядро (нуль пространство) матрицы A .

Сделаем скелетное разложение матрицы (E−A + A) :

E−A + A=Q·S

где Q n×n−r - матрица rank(Q)=n−r , S n−r×n -матрица rank(S)=n−r .

Тогда (13) можно записать в следующем виде:

x=x*+Q·k, kR n-r .

где k=Sz .

Итак, процедура нахождения общего решения системы линейных уравнений с помощью псевдообратной матрицы можно представить в следующем виде:

  1. Вычисляем псевдообратную матрицу A + .
  2. Вычисляем частное решение неоднородной системы линейных уравнений (2): x *=A + b .
  3. Проверяем совместность системы. Для этого вычисляем AA + b . Если AA + b b , то система несовместна. В противном случае продолжаем процедуру.
  4. Высисляем E−A + A.
  5. Делаем скелетное разложение E−A + A=Q·S.
  6. Строим решение

x=x*+Q·k, kR n-r .

Решение системы линейных уравнений онлайн

Онлайн калькулятор позволяет найти обшее решение системы линейных уравнений с подробными объяснениями.

В общем случае линейное уравнение имеет вид:

Уравнение имеет решение: если хотя бы один из коэффициентов при неизвестных отличен от нуля. В этом случае любой -мерный вектор называется решением уравнения, если при подстановке его координат уравнение обращается в тождество.

Общая характеристика разрешенной системы уравнений

Пример 20.1

Дать характеристику системе уравнений .

Решение :

1. Входит ли в состав противоречивое уравнение? (Если коэффициенты, в этом случае уравнение имеет вид: и называется противоречивым .)

  • Если система содержит противоречивое, то такая система несовместна и не имеет решения

2. Найти все разрешенные переменные . (Неизвестная называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит (т.е. входит с коэффициентом, равным нулю).

3. Является ли система уравнений разрешенной? (Система уравнений называется разрешенной , если каждое уравнение системы содержит разрешенную неизвестную, среди которых нет совпадающих)

Разрешенные неизвестные, взятые по одному из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. (в нашем примере это )

Разрешенные неизвестные, входящие в полный набор, называют также базисными (), а не входящие в набор — свободными ().

В общем случае разрешенная система уравнений имеет вид:

На данном этапе главное понять что такое разрешенная неизвестная (входящая в базис и свободная).

Общее Частное Базисное решения

Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:

Частным решением называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.

  • Базисное решение (вектор) называется вырожденным , если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
  • Базисное решение называется невырожденным , если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Теорема (1)

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

Пример 1. Найти общее, базисное и какое-либо частное решение системы уравнений:

Решение :

1. Проверяем является ли система разрешенной?

  • Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)

2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения .

3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор .

4. Находим частное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.

Ответ: частное решение (один из вариантов)

5. Находим базисное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.

Элементарные преобразования линейных уравнений

Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.

Теорема (2)

Если какое-либо уравнение системы умножить на некоторое отличное от нуля число , а остальные уравнения оставить без изменения, то . (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)

Теорема (3)

Если к какому-либо уравнению системы прибавить другое , а все остальные уравнения оставить без изменения, то получится система, равносильная данной . (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)

Следствие из Теорем (2 и 3)

Если к какому-либо уравнению прибавить другое, умноженное на некоторое число , а все остальные уравнения оставить без изменения, то получится система, равносильная данной .

Формулы пересчета коэффициентов системы

Если у нас есть система уравнений и мы хотим преобразовать ее в разрешенную систему уравнений в этом нам поможет метод Жордана-Гаусса.

Преобразование Жордана с разрешающим элементом позволяет получить для системы уравнений разрешенную неизвестную в уравнении с номером . (пример 2).

Преобразование Жордана состоит из элементарных преобразований двух типов:

Допустим мы хотим сделать неизвестную в нижнем уравнении разрешенной неизвестной. Для этого мы должны разделить на , так чтобы сумма .

Пример 2 Пересчитаем коэффициенты системы

При делении уравнения с номером на , его коэффициенты пересчитываются по формулам:

Чтобы исключить из уравнения с номером , нужно уравнение с номером умножить на и прибавить к этому уравнению.

Теорема (4) О сокращении числа уравнений системы.

Если система уравнений содержит тривиальное уравнение, то его можно исключить из системы, при этом получится система равносильная исходной.

Теорема (5) О несовместимости системы уравнений.

Если система уравнений содержит противоречивое уравнение, то она несовместна.

Алгоритм метода Жордана-Гаусса

Алгоритм решения систем уравнений методом Жордана-Гаусса состоит из ряда однотипных шагов, на каждом из которых производятся действия в следующем порядке:

  1. Проверяется, не является ли система несовместной. Если система содержит противоречивое уравнение, то она несовместна.
  2. Проверяется возможность сокращения числа уравнений. Если в системе содержится тривиальное уравнение, его вычеркивают.
  3. Если система уравнений является разрешенной, то записывают общее решение системы и если необходимо — частные решения.
  4. Если система не является разрешенной, то в уравнении, не содержащем разрешенной неизвестной, выбирают разрешающий элемент и производят преобразование Жордана с этим элементом.
  5. Далее заново переходят к пункту 1
Пример 3 Решить систему уравнений методом Жордана-Гаусса.

Найти : два общих и два соответствующих базисных решения

Решение :

Вычисления приведены в нижеследующей таблице:

Справа от таблицы изображены действия над уравнениями. Стрелками показано к какому уравнению прибавляется уравнение с разрешающим элементом, умноженное на подходящий множитель.

В первых трех строках таблицы помещены коэффициенты при неизвестных и правые части исходной системы. Результаты первого преобразования Жордана с разрешающим элементом равным единице приведены в строках 4, 5, 6. Результаты второго преобразования Жордана с разрешающим элементом равным (-1) приведены в строках 7, 8, 9. Так как третье уравнение является тривиальным, то его можно не учитывать.

Рассмотрим вначале случай, когда число уравнений равно числу переменных, т.е. m = n. Тогда матрица системы - квадратная, а ее определитель называют определителем системы.

Метод обратной матрицы

Рассмотрим в общем виде систему уравнений АХ = В с невырожденной квадратной матрицей А. В этом случае существует обратная матрица А -1 . Домножим слева обе части на А -1 . Получим А -1 АХ = А -1 В. Отсюда ЕХ = А -1 В и

Последнее равенство представляет собой матричную формулу для нахождения решения таких систем уравнений. Использование этой формулы получило название метода обратной матрицы

Например, решим этим методом следующую систему:

;

В конце решения системы можно сделать проверку, подставив найденные значения в уравнения системы. При этом они должны обратиться в верные равенства.

Для рассмотренного примера проведем проверку:

Метод решения систем линейных уравнений с квадратной матрицей по формулам Крамера

Пусть n= 2:

Если обе части первого уравнения умножить на a 22 , а обе части второго – на (-a 12), и затем сложить полученные уравнения, то мы исключим из системы переменнуюx 2 . Аналогично можно исключить переменнуюx 1 (умножив обе части первого уравнения на (-a 21), а обе части второго – наa 11). В результате получим систему:

Выражение в скобках есть определитель системы

Обозначим

Тогда система примет вид:

Из полученной системы следует, что если определитель системы 0, то система будет совместной и определенной. Ее единственное решение можно вычислить по формулам:

Если = 0, а 1 0 и/или 2 0, то уравнения системы примут вид 0*х 1 = 2 и/или0*х 1 = 2 . В этом случае система будет несовместной.

В случае, когда = 1 = 2 = 0, система будет совместной и неопределенной (будет иметь бесконечное множество решений), так как примет вид:

Теорема Крамера (доказательство опустим). Если определитель матрицы системыnуравненийне равен нулю, то система имеет единственное решение, определяемое по формулам:

,

где  j - определитель матрицы, получаемой из матрицы А заменой j-го столбца столбцом свободных членов.

Вышеприведенные формулы называют формулами Крамера .

В качестве примера решим этим методом систему, которую до этого решали методом обратной матрицы:

Недостатки рассмотренных методов:

1) существенная трудоемкость (вычисление определителей и нахождение обратной матрицы);

2) ограниченная область применения (для систем с квадратной матрицей).

Реальных экономические ситуации чаще моделируются системами, в которых число уравнений и переменных довольно значительное, причем уравнений больше, чем переменных Поэтому на практике более распространен следующий метод.

Метод Гаусса (метод последовательного исключения переменных)

Этот метод используется для решения системы m линейных уравнений с n переменными в общем виде. Его суть заключается в применении к расширенной матрице системы равносильных преобразований, с помощью которых система уравнений преобразуется к виду, когда ее решения становится легко найти (если они есть).

Это такой вид, в котором левая верхняя часть матрицы системы будет представлять собой ступенчатую матрицу. Этого добиваются с помощью тех же приемов, с помощью которых получали ступенчатую матрицу с целью определения ранга. При этом применяют к расширенной матрице элементарные преобразования, которые позволят получить равносильную систему уравнений. После этого расширенная матрица примет вид:

Получение такой матрицы называют прямым ходом метода Гаусса.

Нахождение из соответствующей системы уравнений значений переменных называют обратным ходом метода Гаусса. Рассмотрим его.

Отметим, что последние (m – r) уравнений примут вид:

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство будет ложным, а вся система несовместной.

Поэтому для любой совместной системы
. В этом случае последние (m – r) уравнений при любых значениях переменных будут тождествами 0 = 0, и их можно не принимать во внимание при решении системы (просто отбросить соответствующие строки).

После этого система примет вид:

Рассмотрим вначале случай, когда r=n. Тогда система примет вид:

Из последнего уравнения системы можно однозначно найти x r .

Зная x r , из него можно однозначно выразитьx r -1 . Затем из предыдущего уравнения, знаяx r иx r -1 , можно выразитьx r -2 и т.д. доx 1 .

Итак, в этом случае система будет совместной и определенной.

Теперь рассмотрим случай, когда rбазисными (основными), а все остальные –небазисными (неосновными, свободными). Последнее уравнение системы будет иметь вид:

Из этого уравнения можно выразить базисную переменную x r через небазисные:

Предпоследнее уравнение будет иметь вид:

Подставив в него вместо x r полученное выражение, можно будет выразить базисную переменнуюx r -1 через небазисные. И т.д. до переменнойx 1 . Чтобы получить решение системы, можно приравнять небазисные переменные к произвольным значениям и после этого вычислить базисные переменные по полученным формулам. Таким образом, в этом случае система будет совместной и неопределенной (иметь бесконечное множество решений).

Например, решим систему уравнений:

Совокупность базисных переменных будем называть базисом системы. Совокупность столбцов коэффициентов при них тоже будем называтьбазисом (базисными столбцами), илибазисным минором матрицы системы. То решение системы, в котором все небазисные переменные равны нулю, будем называтьбазисным решением .

В предыдущем примере базисным решением будет (4/5; -17/5; 0; 0) (переменные х 3 и х 4 (с 1 и с 2) приравнены к нулю, а базисные переменные х 1 и х 2 рассчитаны через них). Чтобы привести пример небазисного решения, надо приравнять х 3 и х 4 (с 1 и с 2) к произвольным числам, неравным одновременно нулю, и рассчитать через них остальные переменные. Например, при с 1 = 1 и с 2 = 0 получим небазисное решение – (4/5; -12/5; 1; 0). Подстановкой легко убедиться, что оба решения – верные.

Очевидно, что в неопределенной системе небазисных решений может быть бесконечно много. Сколько может быть базисных решений? Каждой строке преобразованной матрицы должна соответствовать одна базисная переменная. Всего в задаче nпеременных, а базисных строк –r. Поэтому число всевозможных наборов базисных переменных не может превысить число сочетаний изnпоr 2 . Оно может быть меньше, чем , потому что не всегда можно преобразовать систему к такому виду, чтобы именно этот набор переменных был базисным.

Что это за вид? Это такой вид, когда матрица, образованная из столбцов коэффициентов при этих переменных, будет ступенчатой, и при этом будет состоять из rстрок. Т.е. ранг матрицы коэффициентов при этих переменных должен быть равенr. Большеrон быть не может, так как число столбцов равноr. Если он окажется меньшеr, то это говорит о линейной зависимости столбцов при переменных. Такие столбцы не могут составить базис.

Рассмотрим, какие еще базисные решения могут быть найдены в рассмотренном выше примере. Для этого рассмотрим всевозможные сочетания из четырех переменных по две базисных. Таких сочетаний будет
, причем одно из них (х 1 и х 2) уже было рассмотрено.

Возьмем переменные х 1 и х 3 . Найдем ранг матрицы коэффициентов при них:

Так как он равен двум, они могут быть базисными. Приравняем небазисные переменные х 2 и х 4 к нулю: х 2 = х 4 = 0. Тогда из формулы х 1 = 4/5 – (1/5)*х 4 следует, что х 1 = 4/5, а из формулы х 2 = -17/5 + х 3 - - (7/5)*х 4 = -17/5 + х 3 следует, что х 3 = х 2 +17/5 = 17/5. Таким образом, мы получим базисное решение (4/5; 0; 17/5; 0).

Аналогично можно получить базисные решения для базисных переменных х 1 и х 4 – (9/7; 0; 0; -17/7); х 2 и х 4 – (0; -9; 0; 4); х 3 и х 4 – (0; 0; 9; 4).

Переменные х 2 и х 3 в этом примере нельзя взять в качестве базисных, так как ранг соответствующей матрицы равен единице, т.е. меньше двух:

.

Возможен и другой подход к определению того, можно или нет составить базис из некоторых переменных. При решении примера в итоге преобразования матрицы системы к ступенчатому виду она приняла вид:

Выбирая пары переменных, можно было рассчитать соответствующие миноры этой матрицы. Легко убедиться, что для всех пар, кроме х 2 и х 3 , они не равны нулю, т.е. столбцы линейно независимы. И только для столбцов при переменных х 2 и х 3
, что говорит об их линейной зависимости.

Рассмотрим еще один пример. Решим систему уравнений

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво - оно привелось к неверному равенству 0 = -1, следовательно, данная система несовместна.

Метод Жордана-Гаусса 3 представляет собой развитие метода Гаусса. Суть его состоит в том, что расширенную матрицу системы преобразуют к виду, когда коэффициенты приrпеременных образуют единичную матрицу с точностью до перестановки строк или столбцов 4 (гдеr– ранг матрицы системы).

Решим этим методом систему:

Рассмотрим расширенную матрицу системы:

В этой матрице выберем единичный элемент. Например, коэффициент при х 2 в третьем ограничении 5 . Добьемся, чтобы в остальных строках в этом столбце стояли нули, т.е. сделаем столбец единичным. В процессе преобразований будем называть этотстолбец разрешающим (ведущим, ключевым). Третье ограничение (третьюстроку ) тоже будем называтьразрешающей . Самэлемент , который стоит на пересечении разрешающих строки и столбца (здесь это единица), тоже называютразрешающим .

В первой строке сейчас стоит коэффициент (-1). Чтобы получить на его месте ноль, умножим третью строку на (-1) и вычтем результат из первой строки (т.е. просто сложим первую строку с третьей).

Во второй строке стоит коэффициент 2. Чтобы получить на его месте ноль, умножим третью строку на 2 и вычтем результат из первой строки.

Результат преобразований будет иметь вид:

Из этой матрицы хорошо видно, что одно из первых двух ограничений можно вычеркнуть (соответствующие строки пропорциональны, т.е. эти уравнения следуют друг из друга). Вычеркнем, например, второе:

Итак, в новой системе два уравнения. Получен единичный столбец (второй), причем единица здесь стоит во второй строке. Запомним, что второму уравнению новой системы у нас будет соответствовать базисная переменная х 2 .

Выберем базисную переменную для первой строки. Это может быть любая переменная, кроме х 3 (потому что при х 3 в первом ограничении стоит нулевой коэффициент, т.е. набор переменных х 2 и х 3 здесь базисным быть не может). Можно взять первую или четвертую переменную.

Выберем х 1 . Тогда разрешающим элементом будет 5, и обе части разрешающего уравнения придется разделить на пять, чтобы получить в первом столбце первой строки единицу.

Добьемся, чтобы в остальных строках (т.е. во второй строке) в первом столбце стояли нули. Так как сейчас во второй строке стоит не ноль, а 3, надо вычесть из второй строки элементы преобразованной первой строки, умноженные на 3:

Из полученной матрицы можно непосредственно извлечь одно базисное решение, приравняв небазисные переменные к нулю, а базисные – к свободным членам в соответствующих уравнениях: (0,8; -3,4; 0; 0). Можно также вывести общие формулы, выражающие базисные переменные через небазисные: х 1 = 0,8 – 1,2х 4 ; х 2 = -3,4 + х 3 + 1,6х 4 . Эти формулы описывают все бесконечное множество решений системы (приравнивая х 3 и х 4 к произвольным числам, можно вычислить х 1 и х 2).

Отметим, что суть преобразований на каждом этапе метода Жордана-Гаусса заключалась в следующем:

1) разрешающую строку делили на разрешающий элемент, чтобы получить на его месте единицу,

2) из всех остальных строк вычитали преобразованную разрешающую, умноженную на тот элемент, который стоял в данной строке в разрешающем столбце, чтобы получить на месте этого элемента ноль.

Рассмотрим еще раз преобразованную расширенную матрицу системы:

Из этой записи видно, что ранг матрицы системы А равен r.

В ходе проведенных рассуждений мы установили, что система будет совместной тогда и только тогда, когда
. Это означает, что расширенная матрица системы будет иметь вид:

Отбрасывая нулевые строки, мы получим, что ранг расширенной матрицы системы тоже равен r.

Теорема Кронекера-Капелли . Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Вспомним, что ранг матрицы равен максимальному числу ее линейно независимых строк. Из этого следует, что если ранг расширенной матрицы меньше числа уравнений, то уравнения системы линейно зависимы, и одно или несколько из них могут быть исключены из системы (поскольку являются линейной комбинацией остальных). Система уравнений будет линейно независимой лишь в том случае, если ранг расширенной матрицы равен числу уравнений.

При этом для совместных систем линейных уравнений можно утверждать, что если ранг матрицы равен числу переменных, то система имеет единственное решение, а если он меньше числа переменных, то система неопределенная и имеет бесконечно много решений.

1Например, пусть в матрице пять строк (исходный порядок строк – 12345). Надо поменять вторую строку и пятую. Чтобы вторая строка попала на место пятой, «сдвинулась» вниз, последовательно три раза поменяем соседние строки: вторую и третью (13245), вторую и четвертую (13425) и вторую и пятую (13452). Затем, чтобы пятая строка попала на место второй в исходной матрице, надо «сдвинуть» вверх пятую строку путем только двух последовательных перемен: пятой и четвертой строк (13542) и пятой и третьей (15342).

2Числом сочетаний из n по r называют число всех различных r–элементных подмножеств n–элементного множества (различными множествами считаются те, которые имеют различный состав элементов, порядок отбора при этом не важен). Его вычисляют по формуле:
. Напомним смысл знака “!” (факториал):
0!=1.)

3Поскольку этот метод более распространен, чем рассмотренный ранее метод Гаусса, и по своей сути представляет собой сочетание прямого и обратного хода метода Гаусса, его тоже иногда называют методом Гаусса, опуская первую часть названия.

4Например,
.

5Если бы в матрице системы не было единиц, то можно было бы, например, разделить обе части первого уравнения на два, и тогда первый коэффициент стал бы единичным; или т.п.

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы "Система линейных алгебраических уравнений. Основные термины. Матричная форма записи" . В частности, нужны такие понятия, как матрица системы и расширенная матрица системы , поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы - буквой $\widetilde{A}$.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $\rang A=\rang\widetilde{A}$.

Напомню, что система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если $\rang A=\rang\widetilde{A}$, то решение есть; если $\rang A\neq\rang\widetilde{A}$, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква $n$, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

  1. Если $\rang A\neq\rang\widetilde{A}$, то СЛАУ несовместна (не имеет решений).
  2. Если $\rang A=\rang\widetilde{A} < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений).
  3. Если $\rang A=\rang\widetilde{A} = n$, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют - то сколько.

Пример №1

Исследовать СЛАУ $ \left \{\begin{aligned} & -3x_1+9x_2-7x_3=17;\\ & -x_1+2x_2-4x_3=9;\\ & 4x_1-2x_2+19x_3=-42. \end{aligned}\right.$ на совместность. Если СЛАУ совместна, указать количество решений.

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $\widetilde{A}$, запишем их:

$$ A=\left(\begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right);\; \widetilde{A}=\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right). $$

Нужно найти $\rang A$ и $\rang\widetilde{A}$. Для этого есть много способов, некоторые из которых перечислены в разделе "Ранг матрицы" . Обычно для исследования таких систем применяют два метода: "Вычисление ранга матрицы по определению" или "Вычисление ранга матрицы методом элементарных преобразований" .

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг - это наивысший порядок миноров матрицы , среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ - это определитель матрицы $A$, т.е. $\Delta A$. Для вычисления определителя применим формулу №2 из темы "Формулы для вычисления определителей второго и третьего порядков" :

$$ \Delta A=\left| \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right|=-21. $$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $\rang A=3$.

Нам требуется найти также и $\rang\widetilde{A}$. Давайте посмотрим на структуру матрицы $\widetilde{A}$. До черты в матрице $\widetilde{A}$ находятся элементы матрицы $A$, причём мы выяснили, что $\Delta A\neq 0$. Следовательно, у матрицы $\widetilde{A}$ есть минор третьего порядка, который не равен нулю. Миноров четвёртого порядка матрицы $\widetilde{A}$ составить мы не можем, поэтому делаем вывод: $\rang\widetilde{A}=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение (хотя бы одно). Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система является определённой, т.е. имеет единственное решение.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $\Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы .

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $\Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может - ни одного. Если $\Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Подробно это метод описан в соответствующей теме . Мы станем вычислять ранг матрицы $\widetilde{A}$. Почему именно матрицы $\widetilde{A}$, а не $A$? Дело в том, что матрица $A$ является частью матрицы $\widetilde{A}$, поэтому вычисляя ранг матрицы $\widetilde{A}$ мы одновременно найдем и ранг матрицы $A$.

\begin{aligned} &\widetilde{A} =\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right) \rightarrow \left|\text{меняем местами первую и вторую строки}\right| \rightarrow \\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ -3 & 9 &-7 & 17\\ 4 & -2 & 19 & -42 \end{array} \right) \begin{array} {l} \phantom{0} \\ II-3\cdot I\\ III+4\cdot I \end{array} \rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 6 & 3 & -6 \end{array} \right) \begin{array} {l} \phantom{0} \\ \phantom{0}\\ III-2\cdot II \end{array}\rightarrow\\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right) \end{aligned}

Мы привели матрицу $\widetilde{A}$ к трапециевидной форме . На главной дагонали полученной матрицы $\left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right)$ расположены три ненулевых элемента: -1, 3 и -7. Вывод: ранг матрицы $\widetilde{A}$ равен 3, т.е. $\rang\widetilde{A}=3$. Делая преобразования с элементами матрицы $\widetilde{A}$ мы одновременно преобразовывали и элементы матрицы $A$, расположенные до черты. Матрица $A$ также приведена к трапециевидной форме: $\left(\begin{array} {ccc} -1 & 2 & -4 \\ 0 & 3 &5 \\ 0 & 0 & -7 \end{array} \right)$. Вывод: ранг матрицы $A$ также равен 3, т.е. $\rang A=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение. Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система определена, т.е. имеет единственное решение.

Какие преимущества второго способа? Главное преимущество - это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса . Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор - это дело вкуса.

Ответ : Заданная СЛАУ совместна и определена.

Пример №2

Исследовать СЛАУ $ \left\{ \begin{aligned} & x_1-x_2+2x_3=-1;\\ & -x_1+2x_2-3x_3=3;\\ & 2x_1-x_2+3x_3=2;\\ & 3x_1-2x_2+5x_3=1;\\ & 2x_1-3x_2+5x_3=-4. \end{aligned} \right.$ на совместность.

Находить ранги матрицы системы и расширенной матрицы системы будем методом элементарных преобразований . Расширенная матрица системы: $\widetilde{A}=\left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -1 & 3 & 2 \\ 3 & -2 & 5 & 1 \\ 2 & -3 & 5 & -4 \end{array} \right)$. Найдём требуемые ранги, преобразовывая расширенную матрицу системы:

Расширенная матрица системы приведена к ступенчатой форме . Если матрица приведена к ступенчатой форме, то ранг её равен количеству ненулевых строк. Следовательно, $\rang A=3$. Матрица $A$ (до черты) приведена к трапециевидной форме и ранг её равен 2, $\rang A=2$.

Так как $\rang A\neq\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система несовместна (т.е. не имеет решений).

Ответ : система несовместна.

Пример №3

Исследовать СЛАУ $ \left\{ \begin{aligned} & 2x_1+7x_3-5x_4+11x_5=42;\\ & x_1-2x_2+3x_3+2x_5=17;\\ & -3x_1+9x_2-11x_3-7x_5=-64;\\ & -5x_1+17x_2-16x_3-5x_4-4x_5=-90;\\ & 7x_1-17x_2+23x_3+15x_5=132. \end{aligned} \right.$ на совместность.

Расширенная матрица системы имеет вид: $\widetilde{A}=\left(\begin{array} {ccccc|c} 2 & 0 & 7 & -5 & 11 & 42\\ 1 & -2 & 3 & 0 & 2 & 17 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right)$. Поменяем местами первую и вторую строки данной матрицы, чтобы первым элементом первой строки стала единица: $\left(\begin{array} {ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 2 & 0 & 7 & -5 & 11 & 42 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right)$.

Мы привели расширенную матрицу системы и саму матрицу системы к трапециевидной форме . Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $\rang\widetilde{A}=\rang A < n$, то согласно следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ : система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.